Low-Complexity Relaxations and Convex Hulls of Disjunctions on the Positive Semidefinite Cone and General Regular Cones

In this paper we analyze general two-term disjunctions on a regular cone $\K$ and derive a general form for a family of convex inequalities which are valid for the resulting nonconvex sets. Under mild technical assumptions, these inequalities collectively describe the closed convex hulls of these disjunctions, and if additional conditions are satisfied, a single … Read more

Disjunctive Cuts for Cross-Sections of the Second-Order Cone

In this paper we provide a unified treatment of general two-term disjunctions on cross-sections of the second-order cone. We derive a closed-form expression for a convex inequality that is valid for such a disjunctive set and show that this inequality is sufficient to characterize the closed convex hull of all two-term disjunctions on ellipsoids and … Read more

Two-Term Disjunctions on the Second-Order Cone

Balas introduced disjunctive cuts in the 1970s for mixed-integer linear programs. Several recent papers have attempted to extend this work to mixed-integer conic programs. In this paper we study the structure of the convex hull of a two-term disjunction applied to the second-order cone, and develop a methodology to derive closed-form expressions for convex inequalities … Read more

Incremental and Encoding Formulations for Mixed Integer Programming

The standard way to represent a choice between n alternatives in Mixed Integer Programming is through n binary variables that add up to one. Unfortunately, this approach commonly leads to unbalanced branch-and-bound trees and diminished solver performance. In this paper, we present an encoding formulation framework that encompasses and expands existing approaches to mitigate this … Read more