Fast convergence of the primal-dual dynamical system and algorithms for a nonsmooth bilinearly coupled saddle point problem

This paper is devoted to study the convergence rates of a second-order dynamical system and its corresponding discretizations associated with a nonsmooth bilinearly coupled convex-concave saddle point problem. We derive the convergence rate of the primal-dual gap for the second-order dynamical system with asymptotically vanishing damping term. Based on the implicit discretization, we propose a … Read more

Fast convergence of inertial primal-dual dynamics and algorithms for a bilinearly coupled saddle point problem

This paper is devoted to study the convergence rates of a second-order dynamical system and its corresponding discretization associated with a continuously differentiable bilinearly coupled convex-concave saddle point problem. First, we consider the second-order dynamical system with asymptotically vanishing damping term and show the existence and uniqueness of the trajectories as global twice continuously differentiable … Read more

Convergence Rate of an Inertial Extragradient Method for Strongly Pseudomonotone Equilibrium Problems in Hilbert Spaces

In this work, we establish the $R$-linear convergence rate of the inertial extragradient method for solving strongly pseudo-monotone equilibrium problems with a new self adaptive step-size. The linear convergence rate of the proposed methods is obtained without the prior knowledge of the Lipschitz-type constants of the bifunction. We also discuss the application of the obtained … Read more