Identifiability, the KL property in metric spaces, and subgradient curves

Identifiability, and the closely related idea of partial smoothness, unify classical active set methods and more general notions of solution structure. Diverse optimization algorithms generate iterates in discrete time that are eventually confined to identifiable sets. We present two fresh perspectives on identifiability. The first distills the notion to a simple metric property, applicable not … Read more

The structure of conservative gradient fields

The classical Clarke subdifferential alone is inadequate for understanding automatic differentiation in nonsmooth contexts. Instead, we can sometimes rely on enlarged generalized gradients called “conservative fields”, defined through the natural path-wise chain rule: one application is the convergence analysis of gradient-based deep learning algorithms. In the semi-algebraic case, we show that all conservative fields are … Read more