Learning in Inverse Optimization: Incenter Cost, Augmented Suboptimality Loss, and Algorithms

In Inverse Optimization (IO), an expert agent solves an optimization problem parametric in an exogenous signal. From a learning perspective, the goal is to learn the expert’s cost function given a dataset of signals and corresponding optimal actions. Motivated by the geometry of the IO set of consistent cost vectors, we introduce the “incenter” concept, … Read more

The complexity of first-order optimization methods from a metric perspective

A central tool for understanding first-order optimization algorithms is the Kurdyka-Lojasiewicz inequality. Standard approaches to such methods rely crucially on this inequality to leverage sufficient decrease conditions involving gradients or subgradients. However, the KL property fundamentally concerns not subgradients but rather “slope”, a purely metric notion. By highlighting this view, and avoiding any use of … Read more

A Stochastic Bregman Primal-Dual Splitting Algorithm for Composite Optimization

We study a stochastic first order primal-dual method for solving convex-concave saddle point problems over real reflexive Banach spaces using Bregman divergences and relative smoothness assumptions, in which we allow for stochastic error in the computation of gradient terms within the algorithm. We show ergodic convergence in expectation of the Lagrangian optimality gap with a … Read more