Improving Column-Generation for Vehicle Routing Problems via Random Coloring and Parallelization

We consider a variant of the Vehicle Routing Problem (VRP) where each customer has a unit demand and the goal is to minimize the total cost of routing a fleet of capacitated vehicles from one or multiple depots to visit all customers. We propose two parallel algorithms to efficiently solve the column-generation based linear-programming relaxation … Read more

Constrained Assortment Optimization under the Paired Combinatorial Logit Model

We study the assortment optimization problem when customer choices are governed by the paired combinatorial logit model. We study unconstrained, capacitated and knapsack constrained versions of this problem, which are all known to be NP-hard. We design efficient algorithms that compute approximately optimal solutions, using a novel relation to the maximum directed cut problem and … Read more

An Approximation Algorithm for Vehicle Routing with Compatibility Constraints

We study a multiple-vehicle routing problem with a minimum makespan objective and compatibility constraints. We provide an approximation algorithm and a nearly-matching hardness of approximation result. We also provide computational results on benchmark instances with diverse sizes showing that the proposed algorithm (i) has a good empirical approximation factor, (ii) runs in a short amount … Read more

Maximizing Non-monotone Submodular Functions under Matroid and Knapsack Constraints

Submodular function maximization is a central problem in combinatorial optimization, generalizing many important problems including Max Cut in directed/undirected graphs and in hypergraphs, certain constraint satisfaction problems, maximum entropy sampling, and maximum facility location problems. Unlike submodular minimization, submodular maximization is NP-hard. In this paper, we give the first constant-factor approximation algorithm for maximizing any … Read more