On the Convergence Results of a class of Nonmonotone Accelerated Proximal Gradient Methods for Nonsmooth and Nonconvex Minimization Problems

In this paper, we consider a class of nonsmooth problem that is the sum of a Lipschitz differentiable function and a nonsmooth and proper lower semicontinuous function. We discuss here the convergence rate of the function values for a nonmonotone accelerated proximal gradient method, which proposed in “Huan Li and Zhouchen Lin: Accelerated proximal gradient … Read more

A Nonmonontone Accelerated Proximal Gradient Method with Variable Stepsize Strategy for Nonsmooth and Nonconvex Minimization Problems

We propose a new nonmonontone accelerated proximal gradient method with variable stepsize strategy for minimizing the sum of a nonsmooth function with a smooth one in the nonconvex setting. In this algorithm, the objective function value be allowed to increase discontinuously, but is decreasing from the overall point of view. The variable stepsize strategy don’t … Read more

An Implementable Proximal Point Algorithmic Framework for Nuclear Norm Minimization

The nuclear norm minimization problem is to find a matrix with the minimum nuclear norm subject to linear and second order cone constraints. Such a problem often arises from the convex relaxation of a rank minimization problem with noisy data, and arises in many fields of engineering and science. In this paper, we study inexact … Read more