Spectral properties of Barzilai-Borwein rules in solving singly linearly constrained optimization problems subject to lower and upper bounds

In 1988, Barzilai and Borwein published a pioneering paper which opened the way to inexpensively accelerate first-order methods. More in detail, in the framework of unconstrained optimization, Barzilai and Borwein developed two strategies to select the steplength in gradient descent methods with the aim of encoding some second-order information of the problem without computing and/or … Read more

Steplength selection in gradient projection methods for box-constrained quadratic programs

The role of the steplength selection strategies in gradient methods has been widely investigated in the last decades. Starting from the work of Barzilai and Borwein (1988), many efficient steplength rules have been designed, that contributed to make the gradient approaches an effective tool for the large-scale optimization problems arising in important real-world applications. Most … Read more

A Non-monotonic Method for Large-scale Nonnegative Least Squares

We present a new algorithm for nonnegative least-squares (NNLS). Our algorithm extends the unconstrained quadratic optimization algorithm of Barzilai and Borwein (BB) (J. Barzilai and J. M. Borwein; Two-Point Step Size Gradient Methods. IMA J. Numerical Analysis; 1988.) to handle nonnegativity constraints. Our extension diff ers in several basic aspects from other constrained BB variants. The … Read more

An Implementable Proximal Point Algorithmic Framework for Nuclear Norm Minimization

The nuclear norm minimization problem is to find a matrix with the minimum nuclear norm subject to linear and second order cone constraints. Such a problem often arises from the convex relaxation of a rank minimization problem with noisy data, and arises in many fields of engineering and science. In this paper, we study inexact … Read more

Global and finite termination of a two-phase augmented Lagrangian filter method for general quadratic programs

We present a two-phase algorithm for solving large-scale quadratic programs (QPs). In the first phase, gradient-projection iterations approximately minimize an augmented Lagrangian function and provide an estimate of the optimal active set. In the second phase, an equality-constrained QP defined by the current inactive variables is approximately minimized in order to generate a second-order search … Read more

Gradient Projection Methods for Quadratic Programs and Applications in Training Support Vector Machines

Gradient projection methods based on the Barzilai-Borwein spectral steplength choices are considered for quadratic programming problems with simple constraints. Well known nonmonotone spectral projected gradient methods and variable projection methods are discussed. For both approaches the behavior of different combinations of the two spectral steplengths is investigated. A nw adaptive stplength alternating rule is proposed, … Read more