Aubin Property and Uniqueness of Solutions in Cone Constrained Optimization

We discuss conditions for the Aubin property of solutions to perturbed cone constrained programs, by using and refining results given in \cite{KlaKum02}. In particular, we show that constraint nondegeneracy and hence uniqueness of the multiplier is necessary for the Aubin property of the critical point map. Moreover, we give conditions under which the critical point … Read more


The $\epsilon$-pseudospectral abscissa $\alpha_\epsilon$ and radius $\rho_\epsilon$ of an n x n matrix are respectively the maximal real part and the maximal modulus of points in its $\epsilon$-pseudospectrum, defined using the spectral norm. It was proved in [A.S. Lewis and C.H.J. Pang. Variational analysis of pseudospectra. SIAM Journal on Optimization, 19:1048-1072, 2008] that for fixed … Read more

From convergence principles to stability and optimality conditions

We show in a rather general setting that Hoelder and Lipschitz stability properties of solutions to variational problems can be characterized by convergence of more or less abstract iteration schemes. Depending on the principle of convergence, new and intrinsic stability conditions can be derived. Our most abstract models are (multi-) functions on complete metric spaces. … Read more

Continuity of set-valued maps revisited in the light of tame geometry

Continuity of set-valued maps is hereby revisited: after recalling some basic concepts of variational analysis and a short description of the State-of-the-Art, we obtain as by-product two Sard type results concerning local minima of scalar and vector valued functions. Our main result though, is inscribed in the framework of tame geometry, stating that a closed-valued … Read more