On Hölder Calmness of Minimizing Sets

We present conditions for Hölder calmness and upper Hölder continuity of optimal solution sets to perturbed optimization problems in finite dimensions. Studies on Hölder type stability were a popular subject in variational analysis already in the 1980ies and 1990ies, and have become a revived interest in the last decade. In this paper, we focus on … Read more

Approximations and Generalized Newton Methods

We study local convergence of generalized Newton methods for both equations and inclusions by using known and new approximations and regularity properties at the solution. Including Kantorovich-type settings, our goal are statements about all (not only some) Newton sequences with appropriate initial points. Our basic tools are results of Klatte-Kummer (2002) and Kummer (1988, 1995), … Read more

On Calmness of the Argmin Mapping in Parametric Optimization Problems

Recently, Canovas et. al. (2013) presented an interesting result: the argmin mapping of a linear semi-infinite program under canonical perturbations is calm if and only if some associated linear semi-infinite inequality system is calm. Using classical tools from parametric optimization, we show that the if-direction of this condition holds in a much more general framework … Read more

Aubin Property and Uniqueness of Solutions in Cone Constrained Optimization

We discuss conditions for the Aubin property of solutions to perturbed cone constrained programs, by using and refining results given in \cite{KlaKum02}. In particular, we show that constraint nondegeneracy and hence uniqueness of the multiplier is necessary for the Aubin property of the critical point map. Moreover, we give conditions under which the critical point … Read more

From convergence principles to stability and optimality conditions

We show in a rather general setting that Hoelder and Lipschitz stability properties of solutions to variational problems can be characterized by convergence of more or less abstract iteration schemes. Depending on the principle of convergence, new and intrinsic stability conditions can be derived. Our most abstract models are (multi-) functions on complete metric spaces. … Read more