Disjoint Bilinear Optimization: A Two-Stage Robust Optimization Perspective

In this paper, we focus on a subclass of quadratic optimization problems, that is, disjoint bilinear optimization problems. We first show that disjoint bilinear optimization problems can be cast as two-stage robust linear optimization problems with fixed-recourse and right-hand-side uncertainty, which enables us to apply robust optimization techniques to solve the resulting problems. To this … Read more

A numerical evaluation of the bounded degree sum-of-squares hierarchy of Lasserre, Toh, and Yang on the pooling problem

The bounded degree sum-of-squares (BSOS) hierarchy of Lasserre, Toh, and Yang [EURO J. Comput. Optim., 2015] constructs lower bounds for a general polynomial optimization problem with compact feasible set, by solving a sequence of semi-definite programming (SDP) problems. Lasserre, Toh, and Yang prove that these lower bounds converge to the optimal value of the original … Read more

Linearized Robust Counterparts of Two-stage Robust Optimization Problem with Applications in Operations Management

In this article, we discuss an alternative method for deriving conservative approximation models for two-stage robust optimization problems. The method extends in a natural way a linearization scheme that was recently proposed to construct tractable reformulations for robust static problems involving profit functions that decompose as a sum of piecewise linear concave expressions. Given that … Read more