An Exact Approach for Convex Adjustable Robust Optimization

Adjustable Robust Optimization (ARO) is a paradigm for facing uncertainty in a decision problem, in case some recourse actions are allowed after the actual value of all input parameters is revealed. While several approaches have been introduced for the linear case, little is known regarding exact methods for the convex case. In this work, we … Read more

A Copositive Approach for Two-Stage Adjustable Robust Optimization with Uncertain Right-Hand Sides

We study two-stage adjustable robust linear programming in which the right-hand sides are uncertain and belong to a convex, compact uncertainty set. This problem is NP-hard, and the affine policy is a popular, tractable approximation. We prove that under standard and simple conditions, the two-stage problem can be reformulated as a copositive optimization problem, which … Read more

Linearized Robust Counterparts of Two-stage Robust Optimization Problem with Applications in Operations Management

In this article, we discuss an alternative method for deriving conservative approximation models for two-stage robust optimization problems. The method extends in a natural way a linearization scheme that was recently proposed to construct tractable reformulations for robust static problems involving profit functions that decompose as a sum of piecewise linear concave expressions. Given that … Read more