A Bilevel Hierarchy of Strengthened Complex Moment Relaxations for Complex Polynomial Optimization

This paper proposes a bilevel hierarchy of strengthened complex moment relaxations for complex polynomial optimization. The key trick entails considering a class of positive semidefinite conditions that arise naturally in characterizing the normality of the so-called shift operators. The relaxation problem in this new hierarchy is parameterized by the usual relaxation order as well as … Read more

A real moment-HSOS hierarchy for complex polynomial optimization with real coefficients

This paper proposes a real moment-HSOS hierarchy for complex polynomial optimization problems with real coefficients. We show that this hierarchy provides the same sequence of lower bounds as the complex analogue, yet is much cheaper to solve. In addition, we prove that global optimality is achieved when the ranks of the moment matrix and certain … Read more

A more efficient reformulation of complex SDP as real SDP

This note proposes a new reformulation of complex semidefinite programs (SDPs) as real SDPs. As an application, we present an economical reformulation of complex SDP relaxations of complex polynomial optimization problems as real SDPs and derive some further reductions by exploiting inner structure of the complex SDP relaxations. Various numerical examples demonstrate that our new … Read more