A Simplified Convergence Theory for Byzantine Resilient Stochastic Gradient Descent

In distributed learning, a central server trains a model according to updates provided by nodes holding local data samples. In the presence of one or more malicious servers sending incorrect information (a Byzantine adversary), standard algorithms for model training such as stochastic gradient descent (SGD) fail to converge. In this paper, we present a simplified … Read more

Optimal Distributed Online Prediction using Mini-Batches

Online prediction methods are typically presented as serial algorithms running on a single processor. However, in the age of web-scale prediction problems, it is increasingly common to encounter situations where a single processor cannot keep up with the high rate at which inputs arrive. In this work we present the distributed mini-batch algorithm, a method … Read more