Bounded perturbation resilience of projected scaled gradient methods

We investigate projected scaled gradient (PSG) methods for convex minimization problems. These methods perform a descent step along a diagonally scaled gradient direction followed by a feasibility regaining step via orthogonal projection onto the constraint set. This constitutes a generalized algorithmic structure that encompasses as special cases the gradient projection method, the projected Newton method, … Read more

An Analysis of the EM Algorithm andEntropy-Like Proximal Point Methods

The EM algorithm is a popular method for maximum likelihood estimation from incomplete data. This method may be viewed as a proximal point method for maximizing the log-likelhood function using an integral form of the Kullback-Leibler distance function. Motivated by this interpretation, we consider a proximal point method using an integral form of entropy-like distance … Read more