Distance geometry and data science

Data are often represented as graphs. Many common tasks in data science are based on distances between entities. While some data science methodologies natively take graphs as their input, there are many more that take their input in vectorial form. In this survey we discuss the fundamental problem of mapping graphs to vectors, and its … Read more

Open research areas in distance geometry

Distance Geometry is based on the inverse problem that asks to find the positions of points, in a Euclidean space of given dimension, that are compatible with a given set of distances. We briefly introduce the field, and discuss some open and promising research areas. ArticleDownload View PDF

A Compact Linearisation of Euclidean Single Allocation Hub Location Problems

Hub location problems are strategic network planning problems. They formalise the challenge of mutually exchanging shipments between a large set of depots. The aim is to choose a set of hubs (out of a given set of possible hubs) and connect every depot to a hub so that the total transport costs for exchanging shipments … Read more