An exponential cone representation of the general power cone

Chandrasekaran and Shah (2017) used the exponential cone to model the second-order cone in demonstration of its modeling capabilities. We simplify and extend this result to general power cones. Article Download View An exponential cone representation of the general power cone

Projection onto the exponential cone: a univariate root-finding problem

The exponential function and its logarithmic counterpart are essential corner stones of nonlinear mathematical modeling. In this paper we treat their conic extensions, the exponential cone and the relative entropy cone, in primal, dual and polar form, and show that finding the nearest mapping of a point onto these convex sets all reduce to a … Read more

Error bounds, facial residual functions and applications to the exponential cone

We construct a general framework for deriving error bounds for conic feasibility problems. In particular, our approach allows one to work with cones that fail to be amenable or even to have computable projections, two previously challenging barriers. For the purpose, we first show how error bounds may be constructed using objects called one-step facial … Read more

A primal-dual interior-point algorithm for nonsymmetric exponential-cone optimization.

A new primal-dual interior-point algorithm applicable to nonsymmetric conic optimization is proposed. It is a generalization of the famous algorithm suggested by Nesterov and Todd for the symmetric conic case, and uses primal-dual scalings for nonsymmetric cones proposed by Tuncel. We specialize Tuncel’s primal-dual scalings for the important case of 3 dimensional exponential-cones, resulting in … Read more