On Generalization and Regularization via Wasserstein Distributionally Robust Optimization

Wasserstein distributionally robust optimization (DRO) has found success in operations research and machine learning applications as a powerful means to obtain solutions with favourable out-of-sample performances. Two compelling explanations for the success are the generalization bounds derived from Wasserstein DRO and the equivalency between Wasserstein DRO and the regularization scheme commonly applied in machine learning. … Read more

Finite-Sample Guarantees for Wasserstein Distributionally Robust Optimization: Breaking the Curse of Dimensionality

Wasserstein distributionally robust optimization (DRO) aims to find robust and generalizable solutions by hedging against data perturbations in Wasserstein distance. Despite its recent empirical success in operations research and machine learning, existing performance guarantees for generic loss functions are either overly conservative due to the curse of dimensionality, or plausible only in large sample asymptotics. … Read more