On Augmentation Algorithms for Linear and Integer-Linear Programming: From Edmonds-Karp to Bland and Beyond

Motivated by Bland’s linear-programming generalization of the renowned Edmonds-Karp efficient refinement of the Ford-Fulkerson maximum-flow algorithm, we discuss three closely-related natural augmentation rules for linear and integer-linear optimization. In several nice situations, we show that polynomially-many augmentation steps suffice to reach an optimum. In particular, when using “discrete steepest-descent augmentations” (i.e., directions with the best … Read more

Graver basis and proximity techniques for block-structured separable convex integer minimization problems

We consider N-fold 4-block decomposable integer programs, which simultaneously generalize N-fold integer programs and two-stage stochastic integer programs with N scenarios. In previous work [R. Hemmecke, M. Koeppe, R. Weismantel, A polynomial-time algorithm for optimizing over N-fold 4-block decomposable integer programs, Proc. IPCO 2010, Lecture Notes in Computer Science, vol. 6080, Springer, 2010, pp. 219–229], … Read more