A Special Complementarity Function Revisited

Recently, a local framework of Newton-type methods for constrained systems of equations has been developed which, applied to the solution of Karush-KuhnTucker (KKT) systems, enables local quadratic convergence under conditions that allow nonisolated and degenerate KKT points. This result is based on a reformulation of the KKT conditions as a constrained piecewise smooth system of … Read more

Local Convergence of the Method of Multipliers for Variational and Optimization Problems under the Sole Noncriticality Assumption

We present local convergence analysis of the method of multipliers for equality-constrained variational problems (in the special case of optimization, also called the augmented Lagrangian method) under the sole assumption that the dual starting point is close to a noncritical Lagrange multiplier (which is weaker than second-order sufficiency). Local superlinear convergence is established under the … Read more

A quasi-Newton strategy for the sSQP method for variational inequality and optimization problems

The quasi-Newton strategy presented in this paper preserves one of the most important features of the stabilized Sequential Quadratic Programming method, the local convergence without constraint qualifications assumptions. It is known that the primal-dual sequence converges quadratically assuming only the second-order sufficient condition. In this work, we show that if the matrices are updated by … Read more