Low-Rank Matrix Completion using Nuclear Norm with Facial Reduction

Minimization of the nuclear norm is often used as a surrogate, convex relaxation, for finding the minimum rank completion (recovery) of a partial matrix. The minimum nuclear norm problem can be solved as a trace minimization semidefinite programming problem (\SDP). The \SDP and its dual are regular in the sense that they both satisfy strict … Read more

Augmented L1 and Nuclear-Norm Models with a Globally Linearly Convergent Algorithm

This paper studies the long-existing idea of adding a nice smooth function to “smooth” a non-differentiable objective function in the context of sparse optimization, in particular, the minimization of $||x||_1+1/(2\alpha)||x||_2^2$, where $x$ is a vector, as well as those of the minimization of $||X||_*+1/(2\alpha)||X||_F^2$, where $X$ is a matrix and $||X||_*$ and $||X||_F$ are the … Read more

Recovering low-rank and sparse components of matrices from incomplete and noisy observations

Many applications arising in a variety of fields can be well illustrated by the task of recovering the low-rank and sparse components of a given matrix. Recently, it is discovered that this NP-hard task can be well accomplished, both theoretically and numerically, via heuristically solving a convex relaxation problem where the widely-acknowledged nuclear norm and … Read more