A Machine Learning Approach to Solving Large Bilevel and Stochastic Programs: Application to Cycling Network Design

We present a novel machine learning-based approach to solving bilevel programs that involve a large number of independent followers, which as a special case include two-stage stochastic programming. We propose an optimization model that explicitly considers a sampled subset of followers and exploits a machine learning model to estimate the objective values of unsampled followers. … Read more

Integer linear programming formulations for the minimum connectivity inference problem and model reduction principles

The minimum connectivity inference (MCI) problem represents an NP-hard generalization of the well-known minimum spanning tree problem. Given a set of vertices and a finite collection of subsets (of this vertex set), the MCI problem requires to find an edge set of minimal cardinality so that the vertices of each subset are connected. Although the … Read more

H2-optimal model reduction of MIMO systems

We consider the problem of approximating a $p\times m$ rational transfer function $H(s)$ of high degree by another $p\times m$ rational transfer function $\hat{H}(s)$ of much smaller degree. We derive the gradients of the $H_2$-norm of the approximation error and show how stationary points can be described via tangential interpolation. CitationTechnical report UCL-INMA-2007.034, Department of … Read more