SIAG/Opt Views-and-News Vol 14 No 1

SIAM’s SIAG/Opt Newsletter special issue on Large Scale Nonconvex Optimization. Guest editors Sven Leyffer and Jorge Nocedal, with contributions by Gould, Sachs, Biegler, Waechter, Leyffer, Bussieck and Pruessner. CitationSIAG/Opt Views-and-News, Volume 14 Number 1, April 2003. http://fewcal.uvt.nl/sturm/siagopt/ArticleDownload View PDF

Lagrangian Smoothing Heuristic for Max-Cut

This paper presents smoothing heuristics for an NP-hard combinatorial problem based on Lagrangian relaxation. We formulate the Lagrangian dual for this nonconvex quadratic problem and propose eigenvalue nonsmooth unconstrained optimization to solve the dual problem with bundle or subgradient methods. Derived heuristics are considered to obtain good primal solutions through pathfollowing methods using a projected … Read more

A General Framework for Convex Relaxation of Polynomial Optimization Problems over Cones

The class of POPs (Polynomial Optimization Problems) over cones covers a wide range of optimization problems such as $0$-$1$ integer linear and quadratic programs, nonconvex quadratic programs and bilinear matrix inequalities. This paper presents a new framework for convex relaxation of POPs over cones in terms of linear optimization problems over cones. It provides a … Read more

A truncated SQP algorithm for solving nonconvex equality constrained optimization problems

An algorithm for solving equality constrained optimization problems is proposed. It can deal with nonconvex functions and uses a truncated conjugate algorithm for detecting nonconvexity. The algorithm ensures convergence from remote starting point by using line-search. Numerical experiments are reported, comparing the approach with the one implemented in the trust region codes ETR and Knitro. … Read more