Local convergence for alternating and averaged nonconvex projections

The idea of a finite collection of closed sets having “strongly regular intersection” at a given point is crucial in variational analysis. We show that this central theoretical tool also has striking algorithmic consequences. Specifically, we consider the case of two sets, one of which we assume to be suitably “regular” (special cases being convex … Read more

Alternating projections on manifolds

We prove that if two smooth manifolds intersect transversally, then the method of alternating projections converges locally at a linear rate. We bound the speed of convergence in terms of the angle between the manifolds, which in turn we relate to the modulus of metric regularity for the intersection problem, a natural measure of conditioning. … Read more

A Robust Gradient Sampling Algorithm for Nonsmooth, Nonconvex Optimization

Let $f$ be a continuous function on $\Rl^n$, and suppose $f$ is continuously differentiable on an open dense subset. Such functions arise in many applications, and very often minimizers are points at which $f$ is not differentiable. Of particular interest is the case where $f$ is not convex, and perhaps not even locally Lipschitz, but … Read more