A convex relaxation to compute the nearest structured rank deficient matrix

Given an affine space of matrices L and a matrix \theta in L, consider the problem of finding the closest rank deficient matrix to \theta on L with respect to the Frobenius norm. This is a nonconvex problem with several applications in estimation problems. We introduce a novel semidefinite programming (SDP) relaxation, and we show … Read more

Positioning and construction algorithms for a specific absolute positioning magnetic ruler system

Abstract Absolute positioning magnetic rulers are rulers which calculate the distance of the reading head based just on one reading of a magnetic signal. A new absolute positioning magnetic ruler method which is based on rulers with trapezoidal magnetic poles is considered in this paper. On a fixed position of a ruler, the reading head … Read more

On the Global Optimality for Linear Constrained Rank Minimization Problem

The rank minimization with linear equality constraints has two closely related models, the low rank approximation model, that is to find the best rank-k approximation of a matrix satisfying the linear constraints, and its corresponding factorization model. The latter one is an unconstrained nonlinear least squares problem and hence enjoys a few fast first-order methods … Read more

On Low Rank Matrix Approximations with Applications to Synthesis Problem in Compressed Sensing

We consider the synthesis problem of Compressed Sensing: given $s$ and an $M\times n$ matrix $A$, extract from $A$ an $m\times n$ submatrix $A_m$, with $m$ as small as possible, which is $s$-good, that is, every signal $x$ with at most $s$ nonzero entries can be recovered from observation $A_m x$ by $\ell_1$ minimization: $x … Read more

Alternating projections on manifolds

We prove that if two smooth manifolds intersect transversally, then the method of alternating projections converges locally at a linear rate. We bound the speed of convergence in terms of the angle between the manifolds, which in turn we relate to the modulus of metric regularity for the intersection problem, a natural measure of conditioning. … Read more