Tractable semi-algebraic approximation using Christoffel-Darboux kernel

We provide a new method to approximate a (possibly discontinuous) function using Christoffel-Darboux kernels. Our knowledge about the unknown multivariate function is in terms of finitely many moments of the Young measure supported on the graph of the function. Such an input is available when approximating weak (or measure-valued) solution of optimal control problems, entropy … Read more

Lower Bounds for Measurable Chromatic Numbers

The Lov\’asz theta function provides a lower bound for the chromatic number of finite graphs based on the solution of a semidefinite program. In this paper we generalize it so that it gives a lower bound for the measurable chromatic number of distance graphs on compact metric spaces. In particular we consider distance graphs on … Read more

Symmetry in semidefinite programs

This paper is a tutorial in a general and explicit procedure to simplify semidefinite programming problems which are invariant under the action of a group. The procedure is based on basic notions of representation theory of finite groups. As an example we derive the block diagonalization of the Terwilliger algebra in this framework. Here its … Read more

SPECTRAL STOCHASTIC FINITE-ELEMENT METHODS FOR PARAMETRIC CONSTRAINED OPTIMIZATION PROBLEMS

We present a method to approximate the solution mapping of parametric constrained optimization problems. The approximation, which is of the spectral stochastic finite element type, is represented as a linear combination of orthogonal polynomials. Its coefficients are determined by solving an appropriate finite-dimensional constrained optimization problem. We show that, under certain conditions, the latter problem … Read more

Semidefinite programming, multivariate orthogonal polynomials, and codes in spherical caps

In this paper we apply the semidefinite programming approach developed by the authors to obtain new upper bounds for codes in spherical caps. We compute new upper bounds for the one-sided kissing number in several dimensions where we in particular get a new tight bound in dimension 8. Furthermore we show how to use the … Read more