Hybrid methods for nonlinear least squares problems

This contribution contains a description and analysis of effective methods for minimization of the nonlinear least squares function $F(x) = (1/2) f^T(x) f(x)$, where $x \in R^n$ and $f \in R^m$, together with extensive computational tests and comparisons of the introduced methods. All hybrid methods are described in detail and their global convergence is proved … Read more

High-Order Evaluation Complexity for Convexly-Constrained Optimization with Non-Lipschitzian Group Sparsity Terms

This paper studies high-order evaluation complexity for partially separable convexly-constrained optimization involving non-Lipschitzian group sparsity terms in a nonconvex objective function. We propose a partially separable adaptive regularization algorithm using a $p$-th order Taylor model and show that the algorithm can produce an (epsilon,delta)-approximate q-th-order stationary point in at most O(epsilon^{-(p+1)/(p-q+1)}) evaluations of the objective … Read more