## Tight bounds on the maximal area of small polygons: Improved Mossinghoff polygons

A small polygon is a polygon of unit diameter. The maximal area of a small polygon with $n=2m$ vertices is not known when $m \ge 7$. In this paper, we construct, for each $n=2m$ and $m\ge 3$, a small $n$-gon whose area is the maximal value of a one-variable function. We show that, for all … Read more

## The equilateral small octagon of maximal width

A small polygon is a polygon of unit diameter. The maximal width of an equilateral small polygon with $n=2^s$ vertices is not known when $s \ge 3$. This paper solves the first open case and finds the optimal equilateral small octagon. Its width is approximately $3.24\%$ larger than the width of the regular octagon: $\cos(\pi/8)$. … Read more

## Maximal perimeter and maximal width of a convex small polygon

A small polygon is a polygon of unit diameter. The maximal perimeter and the maximal width of a convex small polygon with $n=2^s$ sides are unknown when $s \ge 4$. In this paper, we construct a family of convex small $n$-gons, $n=2^s$ with $s\ge 4$, and show that their perimeters and their widths are within … Read more

## Tight bounds on the maximal perimeter of convex equilateral small polygons

A small polygon is a polygon of unit diameter. The maximal perimeter of a convex equilateral small polygon with $n=2^s$ vertices is not known when $s \ge 4$. In this paper, we construct a family of convex equilateral small $n$-gons, $n=2^s$ and $s \ge 4$, and show that their perimeters are within $\pi^4/n^4 + O(1/n^5)$ … Read more

## Tight bounds on the maximal perimeter and the maximal width of convex small polygons

A small polygon is a polygon of unit diameter. The maximal perimeter and the maximal width of a convex small polygon with $n=2^s$ vertices are not known when $s \ge 4$. In this paper, we construct a family of convex small $n$-gons, $n=2^s$ and $s\ge 3$, and show that the perimeters and the widths obtained … Read more

## Largest small polygons: A sequential convex optimization approach

A small polygon is a polygon of unit diameter. The maximal area of a small polygon with $n=2m$ vertices is not known when $m\ge 7$. Finding the largest small $n$-gon for a given number $n\ge 3$ can be formulated as a nonconvex quadratically constrained quadratic optimization problem. We propose to solve this problem with a … Read more