Hilbert’s Nullstellensatz and an Algorithm for Proving Combinatorial Infeasibility

Systems of polynomial equations over an algebraically-closed field K can be used to concisely model many combinatorial problems. In this way, a combinatorial problem is feasible (e.g., a graph is 3-colorable, hamiltonian, etc.) if and only if a related system of polynomial equations has a solution over K. In this paper, we investigate an algorithm … Read more

Dynamic Enumeration of All Mixed Cells

The polyhedral homotopy method, which has been known as a powerful numerical method for computing all isolated zeros of a polynomial system, requires all mixed cells of the support of the system to construct a family of homotopy functions. Finding the mixed cells is formulated in terms of a linear inequality system with an additional … Read more

Numerical Stability of Path Tracing in Polyhedral Homotopy Continuation Methods

The reliability of polyhedral homotopy continuation methods for solving a polynomial system becomes increasingly important as the dimension of the polynomial system increases. High powers of the homotopy continuation parameter $t$ and ill-conditioned Jacobian matrices encountered in tracing of homotopy paths affect the numerical stability. We present modified homotopy functions with a new homotopy continuation … Read more