Optimizing pricing strategies through learning the market structure

This study explores the integration of market structure learning into pricing strategies to maximize revenue in e-commerce and retail environments. We consider the problem of determining the revenue maximizing price of a single product in a market of heterogeneous consumers segmented by their product valuations; and analyze the pricing strategies for varying levels of prior … Read more

Online Convex Optimization Perspective for Learning from Dynamically Revealed Preferences

We study the problem of online learning (OL) from revealed preferences: a learner wishes to learn an agent’s private utility function through observing the agent’s utility-maximizing actions in a changing environment. We adopt an online inverse optimization setup, where the learner observes a stream of agent’s actions in an online fashion and the learning performance … Read more