An Exceptionally Difficult Binary Quadratic Optimization Problem with Symmetry: a Challenge for The Largest Unsolved QAP Instance Tai256c

Tai256c is the largest unsolved quadratic assignment problem (QAP) instance in QAPLIB. It is known that QAP tai256c can be converted into a 256 dimensional binary quadratic optimization problem (BQOP) with a single cardinality constraint which requires the sum of the binary variables to be 92. As the BQOP is much simpler than the original … Read more

Solving Challenging Large Scale QAPs

We report our progress on the project for solving larger scale quadratic assignment problems (QAPs). Our main approach to solve large scale NP-hard combinatorial optimization problems such as QAPs is a parallel branch-and-bound method eciently implemented on a powerful computer system using the Ubiquity Generator (UG) framework that can utilize more than 100,000 cores. Lower … Read more

Modulation Design for Two-Way Amplify-and-Forward Relay HARQ

As a practical technique for enhancing relay and HARQ transmissions, Modulation Diversity (MoDiv) uses distinct constellation mappings for data retransmissions. In this work, we study the MoDiv optimization in a amplify-and-forward (AF) two-way relay channel (TWRC). The design of MoDiv design to minimize the bit-error rate (BER) is formulated into a successive Koopmans-Beckmann Quadratic Assignment … Read more

A Level-3 Reformulation-linearization Technique Based Bound for the Quadratic Assignment Problem

We apply the level-3 Reformulation Linearization Technique (RLT3) to the Quadratic Assignment Problem (QAP). We then present our experience in calculating lower bounds using an essentially new algorithm, based on this RLT3 formulation. This algorithm is not guaranteed to calculate the RLT3 lower bound exactly, but approximates it very closely and reaches it in some … Read more