The projective exact penalty method for general constrained optimization

A new projective exact penalty function method is proposed for the equivalent reduction of constrained optimization problems to nonsmooth unconstrained ones. In the method, the original objective function is extended to infeasible points by summing its value at the projection of an infeasible point on the feasible set with the distance to the projection. The … Read more

A new dual for quadratic programming and its applications

The main outcomes of the paper are divided into two parts. First, we present a new dual for quadratic programs, in which, the dual variables are affine functions, and we prove strong duality. Since the new dual is intractable, we consider a modified version by restricting the feasible set. This leads to a new bound … Read more

On mixed integer reformulations of monotonic probabilistic programming problems with discrete distributions

The paper studies large scale mixed integer reformulation approach to stochastic programming problems containing probability and quantile functions, under assumption of discreteness of the probability distribution involved. Jointly with general sample approximation technique and contemporary mixed integer programming solvers the approach gives a regular framework to solution of practical probabilistic programming problems. In the literature … Read more