Primal-dual potential reduction algorithm for symmetric programming problems with nonlinear objective functions

We consider a primal-dual potential reduction algorithm for nonlinear convex optimization problems over symmetric cones. The same complexity estimates as in the case of linear objective function are obtained provided a certain nonlinear system of equations can be solved with a given accuracy. This generalizes the result of K. Kortanek, F. Potra and Y.Ye. We … Read more

Matrix monotonicity and self-concordance:how to handle quantum entropy in optimization problems

Let $g$ be a continuously differentiable function whose derivative is matrix monotone on positive semi-axis. Such a function induces a function $\phi (x)=tr(g(x))$ on the cone of squares of an arbitrary Euclidean Jordan algebra. We show that $\phi (x) -\ln \det(x)$ is a self-concordant function on the interior of the cone. We also show that … Read more

E. Lieb convexity inequalities and noncommutative Bernstein inequality in Jordan-algebraic setting

We describe a Jordan-algebraic version of E. Lieb convexity inequalities. A joint convexity of Jordan-algebraic version of quantum entropy is proven. SA spectral theory on semi-simple complex Jordan algebras is used as atool to prove the convexity results. Possible applications to optimization and statistics are indicated Citation Preprint, University of Notre Dame, August 2014 Article … Read more