Self-Concordance and Matrix Monotonicity with Applications to Quantum Entanglement Problems

Let $V$ be an Euclidean Jordan algebra and $\Omega$ be a cone of invertible squares in $V$. Suppose that $g:\mathbb{R}_{+} \to \mathbb{R}$ is a matrix monotone function on the positive semiaxis which naturally induces a function $\tilde{g}: \Omega \to V$. We show that $-\tilde{g}$ is compatible (in the sense of Nesterov-Nemirovski) with the standard self-concordant … Read more

Long-Step Path-Following Algorithm for Solving Symmetric Programming Problems with Nonlinear Objective Functions

We describe a long-step path-following algorithm for a class of symmetric programming problems with nonlinear convex objective functions. The complexity estimates similar to the case of a linear-quadratic objective function are established. The results of numerical experiments for the class of optimization problems involving quantum entropy are presented. CitationPreprint, University of Notre Dame, December 2017ArticleDownload … Read more

Primal-dual potential reduction algorithm for symmetric programming problems with nonlinear objective functions

We consider a primal-dual potential reduction algorithm for nonlinear convex optimization problems over symmetric cones. The same complexity estimates as in the case of linear objective function are obtained provided a certain nonlinear system of equations can be solved with a given accuracy. This generalizes the result of K. Kortanek, F. Potra and Y.Ye. We … Read more

Remark on multi-target,robust linear-quadratic control problem on semi-infinite interval

We consider multi-target,robust linear-quadratic control problem on semi-infinite interval. Using functional-analytic approach developed in [2], we reduce this problem to a convex optimization problem on the simplex. Explicit procedure for the reduced optimization problem is described. CitationPreprint, University of Notre Dame, August,2015ArticleDownload View PDF

Matrix monotonicity and self-concordance:how to handle quantum entropy in optimization problems

Let $g$ be a continuously differentiable function whose derivative is matrix monotone on positive semi-axis. Such a function induces a function $\phi (x)=tr(g(x))$ on the cone of squares of an arbitrary Euclidean Jordan algebra. We show that $\phi (x) -\ln \det(x)$ is a self-concordant function on the interior of the cone. We also show that … Read more

E. Lieb convexity inequalities and noncommutative Bernstein inequality in Jordan-algebraic setting

We describe a Jordan-algebraic version of E. Lieb convexity inequalities. A joint convexity of Jordan-algebraic version of quantum entropy is proven. SA spectral theory on semi-simple complex Jordan algebras is used as atool to prove the convexity results. Possible applications to optimization and statistics are indicated CitationPreprint, University of Notre Dame, August 2014ArticleDownload View PDF

Multi-target Linear-quadratic control problem: semi-infinite interval

We consider multi-target linear-quadratic control problem on semi-infinite interval. We show that the problem can be reduced to a simple convex optimization problem on the simplex. CitationTo appear in Mathematical Problems in Engineering 2012 ArticleDownload View PDF

Sampling with respect to a class of measures arising in second-order cone optimization with rank constraints

We describe a classof measures on second-order cones as a push-forward of the Cartesian product of a probabilistic measure on positive semi-line corresponding to Gamma distribution and the uniform measure on the sphere Citationreport, Department of Mathematics, University of Notre Dame, July, 2011ArticleDownload View PDF