Cutting Plane Generation Through Sparse Principal Component Analysis

Quadratically-constrained quadratic programs (QCQPs) are optimization models whose remarkable expressiveness has made them a cornerstone of methodological research for nonconvex optimization problems. However, modern methods to solve a general QCQP fail to scale, encountering computational challenges even with just a few hundred variables. Specifically, a semidefinite programming (SDP) relaxation is typically employed, which provides strong … Read more

Solving Large-Scale Sparse PCA to Certifiable (Near) Optimality

Sparse principal component analysis (PCA) is a popular dimensionality reduction technique for obtaining principal components which are linear combinations of a small subset of the original features. Existing approaches cannot supply certifiably optimal principal components with more than $p=100s$ of variables. By reformulating sparse PCA as a convex mixed-integer semidefinite optimization problem, we design a … Read more

On the Quality of a Semidefinite Programming Bound for Sparse Principal Component Analysis

We examine the problem of approximating a positive, semidefinite matrix $\Sigma$ by a dyad $xx^T$, with a penalty on the cardinality of the vector $x$. This problem arises in sparse principal component analysis, where a decomposition of $\Sigma$ involving sparse factors is sought. We express this hard, combinatorial problem as a maximum eigenvalue problem, in … Read more