Containment problems for polytopes and spectrahedra
We study the computational question whether a given polytope or spectrahedron $S_A$ (as given by the positive semidefiniteness region of a linear matrix pencil $A(x)$) is contained in another one $S_B$. First we classify the computational complexity, extending results on the polytope/poly\-tope-case by Gritzmann and Klee to the polytope/spectrahedron-case. For various restricted containment problems, NP-hardness … Read more