Application of Facial Reduction to \infty$ State Feedback Control Problem

One often encounters numerical difficulties in solving linear matrix inequality (LMI) problems obtained from $H_\infty$ control problems. We discuss the reason from the viewpoint of optimization, and provide necessary and sufficient conditions for LMI problem and its dual not to be strongly feasible. Moreover, we interpret them in terms of control system. In this analysis, … Read more

Convex hull of two quadratic or a conic quadratic and a quadratic inequality

In this paper we consider an aggregation technique introduced by Yildiran, 2009 to study the convex hull of regions defined by two quadratic or by a conic quadratic and a quadratic inequality. Yildiran shows how to characterize the convex hull of open sets defined by two strict quadratic inequalities using Linear Matrix Inequalities (LMI). We … Read more

An exact duality theory for semidefinite programming based on sums of squares

Farkas’ lemma is a fundamental result from linear programming providing linear certificates for infeasibility of systems of linear inequalities. In semidefinite programming, such linear certificates only exist for strongly infeasible linear matrix inequalities. We provide nonlinear algebraic certificates for all infeasible linear matrix inequalities in the spirit of real algebraic geometry: A linear matrix inequality … Read more

Inner approximations for polynomial matrix inequalities and robust stability regions

Following a polynomial approach, many robust fixed-order controller design problems can be formulated as optimization problems whose set of feasible solutions is modelled by parametrized polynomial matrix inequalities (PMI). These feasibility sets are typically nonconvex. Given a parametrized PMI set, we provide a hierarchy of linear matrix inequality (LMI) problems whose optimal solutions generate inner … Read more

Implementation and Evaluation of SDPA 6.0 (SemiDefinite Programming Algorithm 6.0

The SDPA (SemiDefinite Programming Algorithm) is a software package for solving general SDPs(SemiDefinite Programs). It is written in C++ with the help of {\it LAPACK} for numerical linear algebra for dense matrix computation. The purpose of this paper is to present a brief description of the latest version of the SDPA and its high performance … Read more