Theorems of the Alternative for Conic Integer Programming

Farkas’ Lemma is a foundational result in linear programming, with implications in duality, optimality conditions, and stochastic and bilevel programming. Its generalizations are known as theorems of the alternative. There exist theorems of the alternative for integer programming and conic programming. We present theorems of the alternative for conic integer programming. We provide a nested … Read more

An elementary proof of linear programming optimality conditions without using Farkas’ lemma

Although it is easy to prove the sufficient conditions for optimality of a linear program, the necessary conditions pose a pedagogical challenge. A widespread practice in deriving the necessary conditions is to invoke Farkas’ lemma, but proofs of Farkas’ lemma typically involve “nonlinear” topics such as separating hyperplanes between disjoint convex sets, or else more … Read more

A Novel Unified Approach to Invariance in Control

In this paper, we propose a novel, unified, general approach to investigate sufficient and necessary conditions under which four types of convex sets, polyhedra, polyhedral cones, ellipsoids and Lorenz cones, are invariant sets for a linear continuous or discrete dynamical system. In proving invariance of ellipsoids and Lorenz cones for discrete systems, instead of the … Read more

An exact duality theory for semidefinite programming based on sums of squares

Farkas’ lemma is a fundamental result from linear programming providing linear certificates for infeasibility of systems of linear inequalities. In semidefinite programming, such linear certificates only exist for strongly infeasible linear matrix inequalities. We provide nonlinear algebraic certificates for all infeasible linear matrix inequalities in the spirit of real algebraic geometry: A linear matrix inequality … Read more

On the Equivalencey of Linear Programming Problems and Zero-Sum Games

In 1951, Dantzig showed the equivalence of linear programming and two-person zero-sum games. However, in the description of his reduction from linear programming to zero-sum games, he noted that there was one case in which his reduction does not work. This also led to incomplete proofs of the relationship between the Minmax Theorem of game … Read more