Verifying Integer Programming Results

Software for mixed-integer linear programming can return incorrect results for a number of reasons, one being the use of inexact floating-point arithmetic. Even solvers that employ exact arithmetic may suffer from programming or algorithmic errors, motivating the desire for a way to produce independently verifiable certificates of claimed results. Due to the complex nature of … Read more

A Characterization of Irreducible Infeasible Subsystems in Flow Networks

Infeasible network flow problems with supplies and demands can be characterized via violated cut-inequalities of the classical Gale-Hoffman theorem. Written as a linear program, irreducible infeasible subsystems (IISs) provide a different means of infeasibility characterization. In this article, we answer a question left open in the literature, by showing a one-to-one correspondence between IISs and … Read more

An exact duality theory for semidefinite programming based on sums of squares

Farkas’ lemma is a fundamental result from linear programming providing linear certificates for infeasibility of systems of linear inequalities. In semidefinite programming, such linear certificates only exist for strongly infeasible linear matrix inequalities. We provide nonlinear algebraic certificates for all infeasible linear matrix inequalities in the spirit of real algebraic geometry: A linear matrix inequality … Read more

Infeasibility Detection and SQP Methods for Nonlinear Optimization

This paper addresses the need for nonlinear programming algorithms that provide fast local convergence guarantees regardless of whether a problem is feasible or infeasible. We present a sequential quadratic programming method derived from an exact penalty approach that adjusts the penalty parameter automatically, when appropriate, to emphasize feasibility over optimality. The superlinear convergence of such … Read more

On linear infeasibility arising in intensity-modulated radiation therapy inverse planning

Intensity–modulated radiation therapy (IMRT) gives rise to systems of linear inequalities, representing the effects of radiation on the irradiated body. These systems are often infeasible, in which case one settles for an approximate solution, such as an {a,ß}–relaxation, meaning that no more than a percent of the inequalities are violated by no more than ß … Read more

New stopping criteria for detecting infeasibility in conic optimization

Detecting infeasibility in conic optimization and providing certificates for infeasibility pose a bigger challenge than in the linear case due to the lack of strong duality. In this paper we generalize the approximate Farkas lemma of Todd and Ye from the linear to the general conic setting, and use it to propose stopping criteria for … Read more

Detecting Infeasibility in Infeasible-Interior-Point Methods for Optimization

We study interior-point methods for optimization problems in the case of infeasibility or unboundedness. While many such methods are designed to search for optimal solutions even when they do not exist, we show that they can be viewed as implicitly searching for well-defined optimal solutions to related problems whose optimal solutions give certificates of infeasibility … Read more

Relations between divergence of multipliers and convergence to infeasible points in primal-dual interior methods for nonconvex nonlinear programming

Recently, infeasibility issues in interior methods for nonconvex nonlinear programming have been studied. In particular, it has been shown how many line-search interior methods may converge to an infeasible point which is on the boundary of the feasible region with respect to the inequality constraints. The convergence is such that the search direction does not … Read more