A Globally Convergent Stabilized SQP Method: Superlinear Convergence

Regularized and stabilized sequential quadratic programming (SQP) methods are two classes of methods designed to resolve the numerical and theoretical difficulties associated with ill-posed or degenerate nonlinear optimization problems. Recently, a regularized SQP method has been proposed that allows convergence to points satisfying certain second-order KKT conditions (SIAM J. Optim., 23(4):1983–2010, 2013). The method is … Read more

SQP Methods for Parametric Nonlinear Optimization

Sequential quadratic programming (SQP) methods are known to be effi- cient for solving a series of related nonlinear optimization problems because of desirable hot and warm start properties–a solution for one problem is a good estimate of the solution of the next. However, standard SQP solvers contain elements to enforce global convergence that can interfere … Read more

A Regularized SQP Method with Convergence to Second-Order Optimal Points

Regularized and stabilized sequential quadratic programming methods are two classes of sequential quadratic programming (SQP) methods designed to resolve the numerical and theoretical difficulties associated with ill-posed or degenerate nonlinear optimization problems. Recently, a regularized SQP method has been proposed that provides a strong connection between augmented Lagrangian methods and stabilized SQP methods. The method … Read more

A GLOBALLY CONVERGENT STABILIZED SQP METHOD

Sequential quadratic programming (SQP) methods are a popular class of methods for nonlinearly constrained optimization. They are particularly effective for solving a sequence of related problems, such as those arising in mixed-integer nonlinear programming and the optimization of functions subject to differential equation constraints. Recently, there has been considerable interest in the formulation of \emph{stabilized} … Read more