Convergence to a second-order critical point of composite nonsmooth problems by a trust region method

An algorithm for finding a first-order and second-order critical point of composite nonsmooth problems is proposed in this paper. For smooth problems, algorithms for searching such a point usually utilize the so called negative-curvature directions. In this paper, the method recently proposed for nonlinear semidefinite problems by the current author is extended for solving general … Read more

OFFO minimization algorithms for second-order optimality and their complexity

An Adagrad-inspired class of algorithms for smooth unconstrained optimization is presented in which the objective function is never evaluated and yet the gradient norms decrease at least as fast as O(1/\sqrt{k+1}) while second-order optimality measures converge to zero at least as fast as O(1/(k+1)^{1/3}). This latter rate of convergence is shown to be essentially sharp … Read more

First and second order optimality conditions for piecewise smooth objective functions

Any piecewise smooth function that is specified by an evaluation procedures involving smooth elemental functions and piecewise linear functions like min and max can be represented in the so-called abs-normal form. By an extension of algorithmic, or automatic differentiation, one can then compute certain first and second order derivative vectors and matrices that represent a … Read more

A Regularized SQP Method with Convergence to Second-Order Optimal Points

Regularized and stabilized sequential quadratic programming methods are two classes of sequential quadratic programming (SQP) methods designed to resolve the numerical and theoretical difficulties associated with ill-posed or degenerate nonlinear optimization problems. Recently, a regularized SQP method has been proposed that provides a strong connection between augmented Lagrangian methods and stabilized SQP methods. The method … Read more