New Sufficient and Necessary Conditions for Constrained and Unconstrained Lipschitzian Error Bounds

Local error bounds play a fundamental role in mathematical programming and variational analysis. They are used e.g. as constraint qualifications in optimization, in developing calculus rules for generalized derivatives in nonsmooth and set-valued analysis, and they serve as a key ingredient in the design and convergence analysis of Newton-type methods for solving systems of possibly … Read more

Sufficient Conditions for Lipschitzian Error Bounds for Complementarity Systems

We are concerned with Lipschitzian error bounds and Lipschitzian stability properties for solutions of a complementarity system. For this purpose, we deal with a nonsmooth slack-variable reformulation of the complementarity system, and study conditions under which the reformulation serves as a local error bound for the solution set of the complementarity system. We also discuss … Read more

Primal Space Necessary Characterizations of Transversality Properties

This paper continues the study of general nonlinear transversality properties of collections of sets and focuses on primal space necessary (in some cases also sufficient) characterizations of the properties. We formulate geometric, metric and slope characterizations, particularly in the convex setting. The Holder case is given a special attention. Quantitative relations between the nonlinear transversality … Read more

Geometric and Metric Characterizations of Transversality Properties

This paper continues the study of ‘good arrangements’ of collections of sets near a point in their intersection. Our aim is to clarify the relations between various quantitative geometric and metric characterizations of the transversality properties of collections of sets and the corresponding regularity properties of set-valued mappings. We expose all the parameters involved in … Read more

Nonlinear Transversality Properties of Collections of Sets: Dual Space Necessary Characterizations

This paper continues the study of ‘good arrangements’ of collections of sets in normed vector spaces near a point in their intersection. Our aim is to study general nonlinear transversality properties. We focus on dual space (subdifferential and normal cone) necessary characterizations of these properties. As an application, we provide dual necessary and sufficient conditions … Read more