A rolling-horizon approach for multi-period optimization

Mathematical optimization problems including a time dimension abound. For example, logistics, process optimization and production planning tasks must often be optimized for a range of time periods. Usually, these problems incorporating time structure are very large and cannot be solved to global optimality by modern solvers within a reasonable period of time. Therefore, the so-called … Read more

Recent Progress Using Matheuristics for Strategic Maritime Inventory Routing

This paper presents an extensive computational study of simple, but prominent matheuristics (i.e., heuristics that rely on mathematical programming models) to fi nd high quality ship schedules and inventory policies for a class of maritime inventory routing problems. Our computational experiments are performed on a set of the publicly available MIRPLib instances. This class of inventory … Read more

Approximate Dynamic Programming for a Class of Long-Horizon Maritime Inventory Routing Problems

We study a deterministic maritime inventory routing problem with a long planning horizon. For instances with many ports and many vessels, mixed-integer linear programming (MIP) solvers often require hours to produce good solutions even when the planning horizon is 90 or 120 periods. Building on the recent successes of approximate dynamic programming (ADP) for road-based … Read more