Vessel Deployment with Limited Information: Distributionally Robust Chance Constrained Models

This paper studies the fundamental vessel deployment problem in the liner shipping industry, which decides the numbers of mixed-type ships and their sailing frequencies on fixed routes to provide sufficient vessel capacity for fulfilling stochastic shipping demands with high probability. In reality, it is usually difficult (if not impossible) to acquire a precise joint distribution … Read more

Recent Progress Using Matheuristics for Strategic Maritime Inventory Routing

This paper presents an extensive computational study of simple, but prominent matheuristics (i.e., heuristics that rely on mathematical programming models) to fi nd high quality ship schedules and inventory policies for a class of maritime inventory routing problems. Our computational experiments are performed on a set of the publicly available MIRPLib instances. This class of inventory … Read more

Bulk Ship Fleet Renewal and Deployment under Uncertainty: A Multi-Stage Stochastic Programming Approach

We study a maritime fleet renewal and deployment problem under demand and charter cost uncertainty. A decision-maker for an industrial bulk shipping company must determine a suitable fleet size, mix, and deployment strategy to satisfy stochastic demand over a given planning horizon. She may acquire vessels in two ways: time chartering and voyage chartering. Time … Read more

Two-Stage Decomposition Algorithms for Single Product Maritime Inventory Routing

We present two decomposition algorithms for single product deep-sea maritime inventory routing problems (MIRPs) that possess a core substructure common in many real-world applications. The problem involves routing vessels, each belonging to a particular vessel class, between loading and discharging ports, each belonging to a particular region. Our algorithms iteratively solve a MIRP by zooming … Read more

MIRPLib – A library of maritime inventory routing problem instances: Survey, core model, and benchmark results

This paper presents a detailed description of a particular class of deterministic single product maritime inventory routing problems (MIRPs), which we call deep-sea MIRPs with inventory tracking at every port. This class involves vessel travel times between ports that are significantly longer than the time spent in port and require inventory levels at all ports … Read more

Approximate Dynamic Programming for a Class of Long-Horizon Maritime Inventory Routing Problems

We study a deterministic maritime inventory routing problem with a long planning horizon. For instances with many ports and many vessels, mixed-integer linear programming (MIP) solvers often require hours to produce good solutions even when the planning horizon is 90 or 120 periods. Building on the recent successes of approximate dynamic programming (ADP) for road-based … Read more

Layered Formulation for the Robust Vehicle Routing Problem with Time Windows

This paper studies the vehicle routing problem with time windows where travel times are uncertain and belong to a predetermined polytope. The objective of the problem is to find a set of routes that services all nodes of the graph and that are feasible for all values of the travel times in the uncertainty polytope. … Read more