New facets and facet-generating procedures for the orientation model for vertex coloring problems

In this work, we study the \emph{orientation model} for vertex coloring problems with the aim of finding partial descriptions of the associated polytopes. We present new families of valid inequalities, most of them supported by paths of the input graph. We develop facet-generating procedures for the associated polytopes, which we denominate \emph{path-lifting procedures}. Given a … Read more

Polyhedral studies of vertex coloring problems: The standard formulation

Despite the fact that many vertex coloring problems are polynomially solvable on certain graph classes, most of these problems are not “under control” from a polyhedral point of view. The equivalence between optimization and separation suggests the existence of integer programming formulations for these problems whose associated polytopes admit elegant characterizations. In this work we … Read more

Solving Vertex Coloring Problems as Maximum Weight Stable Set Problems

In Vertex Coloring Problems, one is required to assign a color to each vertex of an undirected graph in such a way that adjacent vertices receive different colors, and the objective is to minimize the cost of the used colors. In this work we solve four different coloring problems formulated as Maximum Weight Stable Set … Read more