On the complexity of finding first-order critical points in constrained nonlinear optimization
The complexity of finding epsilon-approximate first-order critical points for the general smooth constrained optimization problem is shown to be no worse that O(epsilon^{-2}) in terms of function and constraints evaluations. This result is obtained by analyzing the worst-case behaviour of a first-order shorts-step homotopy algorithm consisting of a feasibility phase followed by an optimization phase, … Read more