Smoothing and Worst Case Complexity for Direct-Search Methods in Non-Smooth Optimization

For smooth objective functions it has been shown that the worst case cost of direct-search methods is of the same order as the one of steepest descent, when measured in number of iterations to achieve a certain threshold of stationarity. Motivated by the lack of such a result in the non-smooth case, we propose, analyze, … Read more

Worst Case Complexity of Direct Search

In this paper we prove that direct search of directional type shares the worst case complexity bound of steepest descent when sufficient decrease is imposed using a quadratic function of the step size parameter. This result is proved under smoothness of the objective function and using a framework of the type of GSS (generating set … Read more

An adaptive cubic regularisation algorithm for nonconvex optimization with convex constraints and its function-evaluation complexity

The adaptive cubic overestimation algorithm described in Cartis, Gould and Toint (2007) is adapted to the problem of minimizing a nonlinear, possibly nonconvex, smooth objective function over a convex domain. Convergence to first-order critical points is shown under standard assumptions, but without any Lipschitz continuity requirement on the objective’s Hessian. A worst-case complexity analysis in … Read more