Design of Near Optimal Decision Rules in Multistage Adaptive Mixed-Integer Optimization

In recent years, decision rules have been established as the preferred solution method for addressing computationally demanding, multistage adaptive optimization problems. Despite their success, existing decision rules (a) are typically constrained by their a priori design and (b) do not incorporate in their modeling adaptive binary decisions. To address these problems, we first derive the … Read more

On the Coupled Continuous Knapsack Problems: Projection Onto the Volume Constrained Gibbs N-Simplex

Coupled continuous quadratic knapsack problems (CCK) are introduced in the present study. The solution of a CCK problem is equivalent to the projection of an arbitrary point onto the volume constrained Gibbs N-simplex, which has a wide range of applications in computational science and engineering. Three algorithms have been developed in the present study to … Read more

On the Incomplete Oblique Projections Method for Solving Box Constrained Least Squares Problems

The aim of this paper is to extend the applicability of the incomplete oblique projections method (IOP) previously introduced by the authors for solving inconsistent linear systems to the box constrained case. The new algorithm employs incomplete projections onto the set of solutions of the augmented system Ax-r= b, together with the box constraints, based … Read more

Stability of Polynomial Differential Equations: Complexity and Converse Lyapunov Questions

We consider polynomial differential equations and make a number of contributions to the questions of (i) complexity of deciding stability, (ii) existence of polynomial Lyapunov functions, and (iii) existence of sum of squares (sos) Lyapunov functions. (i) We show that deciding local or global asymptotic stability of cubic vector fields is strongly NP-hard. Simple variations … Read more