Stochastic nested primal-dual method for nonconvex constrained composition optimization


In this paper we study the nonconvex constrained composition optimization, in which the objective contains a composition of two expected-value functions whose accurate information is normally expensive to calculate. We propose a STochastic nEsted Primal-dual (STEP) method for such problems. In each iteration, with an auxiliary variable introduced to track the inner layer function values we compute stochastic gradients of the nested function using a subsampling strategy. To alleviate difficulties caused by possibly nonconvex constraints, we construct a stochastic approximation to the linearized augmented Lagrangian function to update the primal variable, which further motivates to update the dual variable in a weighted-average way. Moreover, to better understand the asymptotic dynamics of the update schemes we consider a deterministic continuous-time system from the perspective of ordinary differential equation (ODE). We analyze the KKT measure at the output by the STEP method with constant parameters and establish its iteration and sample complexities to find an $\epsilon$-stationary point, ensuring that expected stationarity, feasibility as well as complementary slackness are below accuracy $\epsilon$. To leverage the benefit of the (near) initial feasibility in the STEP method, we propose a two-stage framework incorporating a feasibility-seeking phase, aiming to locate a nearly feasible initial point. Moreover, to enhance the adaptivity of the STEP algorithm, we propose an adaptive variant by adaptively adjusting its parameters, along with a complexity analysis. Numerical results on a risk-averse portfolio optimization problem and an orthogonal nonnegative matrix decomposition reveal the effectiveness of the proposed algorithms.



View Stochastic nested primal-dual method for nonconvex constrained composition optimization