A Unifying Framework for Sparsity Constrained Optimization

In this paper, we consider the optimization problem of minimizing a continuously differentiable function subject to both convex constraints and sparsity constraints. By exploiting a mixed-integer reformulation from the literature, we define a necessary optimality condition based on a tailored neighborhood that allows to take into account potential changes of the support set. We then … Read more

Stationarity and regularity of infinite collections of sets

This article investigates extremality, stationarity, and regularity properties of infinite collections of sets in Banach spaces. Our approach strongly relies on the machinery developed for finite collections. When dealing with an infinite collection of sets, we examine the behaviour of its finite subcollections. This allows us to establish certain primal-dual relationships between the stationarity/regularity properties … Read more

Stationarity and regularity of infinite collections of sets. Applications to infinitely constrained optimization

This article continues the investigation of stationarity and regularity properties of infinite collections of sets in a Banach space started in Kruger & L�pez (2012) and is mainly focused on the application of the criteria from Kruger & L�pez (2012) to infinitely constrained optimization problems. We consider several settings of optimization problems which involve (explicitly … Read more

About Stationarity and Regularity in Variational Analysis

Stationarity and regularity concepts for the three typical for variational analysis classes of objects — real-valued functions, collections of sets, and multifunctions — are investigated. An attempt is maid to present a classification scheme for such concepts and to show that properties introduced for objects from different classes can be treated in a similar way. … Read more

Stationarity and Regularity of Real-Valued Functions

Different stationarity and regularity concepts for extended real-valued functions on metric spaces are considered in the paper. The properties are characterized in terms of certain local constants. A classification scheme for stationarity/regularity constants and corresponding concepts is proposed. The relations between different constants are established. Citation University of Ballarat, School of Information Technology and Mathematical … Read more

About Regularity of Collections of Sets

The paper continues investigations of stationarity and regularity properties of set systems in normed spaces started in the previous paper of the author. It contains a summary of different characterizations (both primal and dual) of regularity and a list of sufficient conditions for a set system to be regular. Citation University of Ballarat, School of … Read more

Stationarity and Regularity of Set Systems

Extremality, stationarity and regularity notions for a system of closed sets in a normed linear space are investigated. The equivalence of different abstract “extremal” settings in terms of set systems and multifunctions is proved. The dual necessary and sufficient conditions of weak stationarity (the Extended extremal principle) are presented for the case of an Asplund … Read more