Stochastic nested primal-dual method for nonconvex constrained composition optimization

In this paper we study the nonconvex constrained composition optimization, in which the objective contains a composition of two expected-value functions whose accurate information is normally expensive to calculate. We propose a STochastic nEsted Primal-dual (STEP) method for such problems. In each iteration, with an auxiliary variable introduced to track the inner layer function values … Read more

A momentum-based linearized augmented Lagrangian method for nonconvex constrained stochastic optimization

Nonconvex constrained stochastic optimization has emerged in many important application areas. Subject to general functional constraints it minimizes the sum of an expectation function and a nonsmooth regularizer. Main challenges arise due to the stochasticity in the random integrand and the possibly nonconvex functional constraints. To address these issues we propose a momentum-based linearized augmented … Read more

Inexact proximal stochastic second-order methods for nonconvex composite optimization

In this paper, we propose a framework of Inexact Proximal Stochastic Second-order (IPSS) methods for solving nonconvex optimization problems, whose objective function consists of an average of finitely many, possibly weakly, smooth functions and a convex but possibly nons- mooth function. At each iteration, IPSS inexactly solves a proximal subproblem constructed by using some positive … Read more

A linearly convergent stochastic recursive gradient method for convex optimization

The stochastic recursive gradient algorithm (SARAH) [8] attracts much interest recently. It admits a simple recursive framework for updating stochastic gradient estimates. Motivated by this, in this paper, we propose a SARAH-I method incorporating importance sampling, whose linear conver- gence rate of the sequence of distances between iterates and the optima set is proven under … Read more

Stochastic Quasi-Newton Methods for Nonconvex Stochastic Optimization

In this paper we study stochastic quasi-Newton methods for nonconvex stochastic optimization, where we assume that noisy information about the gradients of the objective function is available via a stochastic first-order oracle ($\SFO$). We propose a general framework for such methods, for which we prove almost sure convergence to stationary points and analyze its worst-case … Read more

Stochastic Quasi-Newton Methods for Nonconvex Stochastic Optimization

In this paper we study stochastic quasi-Newton methods for nonconvex stochastic optimization, where we assume that only stochastic information of the gradients of the objective function is available via a stochastic first-order oracle (SFO). Firstly, we propose a general framework of stochastic quasi-Newton methods for solving nonconvex stochastic optimization. The proposed framework extends the classic … Read more

Penalty Methods with Stochastic Approximation for Stochastic Nonlinear Programming

In this paper, we propose a class of penalty methods with stochastic approximation for solving stochastic nonlinear programming problems. We assume that only noisy gradients or function values of the objective function are available via calls to a stochastic first-order or zeroth-order oracle. In each iteration of the proposed methods, we minimize an exact penalty … Read more